Abstract
Due to their small size, nanoparticles possess unique properties such as high absorption or pollutant degradation, making them useful for skin protection against chemicals. By covalently grafting to a hydrophobically modified alkali-soluble emulsion (HASE), a thickening polymer, nanoparticles can be dispersed as gels in water at neutral pH. With this modification the potential aggregation and toxicity typical of nanoparticles are avoided. Once integrated into a cosmetic formula, these gels can be spread onto skin to afford protective barriers. This paper reports (1) the benefit of SiO2 nanoparticles grafted to a perfluorocarbon HASE polymer (HASE-F/SiO2) which is then integrated into a new formula and it is influence on the efficacy against the penetration of paraoxone, as well as (2) the stability of the barrier cream (BC) and (3) how the homogenous dispersion of nanoparticles maintains a high active surface area of SiO2 nanoparticles. The efficiency of the new active topical skin protectant was proved at different doses (5–27 mg cm−2), under occlusive conditions and validated on human skin. Therefore, the combination of the HASE-F polymer, nanoparticle grafting, and polyvinylpyrrolidone and glycerol formulation led to a very effective active BC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.