Abstract

The phosphorus production industry is energy-intensive, which is one of the major reasons phosphorus has lower yields through furnace production. In this study, phosphorus conversion rate from phosphorus ore was investigated using four different fluxing agents: silica, potassium shale, potassium feldspar, and nepheline. Different holding times (10, 20, 30, and 40 min), acidity values (0.68, 0.88, 1.02, 1.42, and 2.02), coal surplus coefficients (1.05, 1.25, 1.5, 2, and 2.5), and calcination temperatures (1250 °C, 1300 °C, 1350 °C, 1400 °C, and 1450 °C) were studied. The results demonstrated that potassium shale, potassium feldspar, and nepheline as new fluxing agents improved phosphorus conversion rate under the same experimental conditions. To further ensure the significance of the experiment, the conversion rate of phosphorus from phosphorus ore was also investigated without an additive and with the addition of Na2CO3 and K2CO3. The slag viscosity of different fluxing agents and different additives at high temperatures was analyzed via the spread area method. To investigate the mechanism of phosphorus conversion, silica and nepheline as fluxing slag at different calcination temperatures were analyzed using X-ray diffraction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.