Abstract

Polyacrylonitrile (PAN) nanofibers have specific characteristics such as thermal insulation, weatherproofing, and sunlight resistance and therefore are appropriate to be applied as insulation materials for various industries, especially in greenhouse construction. The heat source in greenhouse buildings that operate independently in the heating network comes from heat storage tanks. In the present study, employing thermal field numerical simulations, we investigate the heat flux of a cylindrical heat storage tank with silica aerogel-modified PAN nanofibers as thermal insulation materials. The geometric scale of the tank body, thermal insulation material thickness, and outdoor temperature are optimized to improve thermal insulation. The significant discrepancy in heat flux at different parts of the heat storage tank leads to the extreme heat flux arising at the water-gas interface on the inner and outer walls. It is indicated that the heat flux distribution can be effectively ameliorated by modifying the scale of the tank body to retain the overall water temperature. In particular, effective insulation can merely be acquired when the thermal conductivity of the insulation material is below 3.3 W·m-1·K-1. Eventually, the heat storage tank is optimized to store 1400 L water at 100 °C with a radius of 0.6 m and a thermal insulation thickness of 50 mm at an outdoor temperature of -10 °C, which can maintain excellent thermal insulation for 8 and 24 h at 87.7 and 69.9 °C, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.