Abstract

Cisplatin is the most often used chemotherapy in the treatment of ovarian cancer (OC), however long-term usage leads to drug resistance and treatment failure. Silibinin is a sparingly water-soluble natural compound with well-known anticancer effects. The use of lipid-based delivery systems is a potential approach for enhancing silibinin's water solubility. In this study, nanostructured lipid carriers (NLCs) containing silibinin were prepared and their inhibitory effects were tested in combination with cisplatin against sensitive/resistant A2780 OC cells. Silibinin-loaded NLCs (silibinin-NLCs) were prepared by the hot homogenization method, and their size, shape, zeta potential (ZP), and encapsulation efficiency (EE), as well as their inhibitory effects, were examined in combination with cisplatin against sensitive/resistant A2780 OC cells. Formulation of silibinin-NLCs using cocoa butter led to spherical-shaped NLCs with a size of 95 nm and EE of 98%. The ZP and the dispersion index of the silibinin-NLCs were -27.12 ± 0.13 mv and 0.12 ± 0.04, respectively. The release kinetics of silibinin-NLCs was best fitted with the zero-order model. The combination of cisplatin and silibinin-NLCs sensitized the cisplatin-resistant A2780 OC cells and exhibited a more synergistic inhibitory effect on A2780 cells as compared with the combination of cisplatin and plain silibinin. The optimized silibinin-NLCs can be considered a suitable drug delivery system for the inhibition of cisplatin-resistant OC cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call