Abstract

BackgroundSilibinin, a major component of milk thistle extract silymarin, promotes hypoglycemia by activating estrogen receptor (ER) α and β-mediated pathways in pancreatic β-cells. Glucagon-like peptide-1 (GLP-1) is the enteroendocrine peptide produced in L-cells, and it controls glucose homeostasis through multiple pathways. The effect of silibinin on L-cell mass and function is still unknown. PurposeThe protective effect of silibinin on palmitate (PA)-treated intestinal L-cell line GLUTag cells and the SHRSP•Z-Leprfa/Izm-Dmcr (SP•ZF) diabetic rat model was investigated in current study. MethodsAfter pre-incubation with 50 μM silibinin for 4 h, GLUTag cells were treated with 0.125 mM PA. MTT, Annexin V/PI apoptosis, Hoechst 33342 staining, western blot, DCFH-DA, GLP-1 ELISA, qRT-PCR and immunofluorescence analyses were undertaken to determine ER-dependent protection of silibinin against PA-induced cellular damage. The differential protein expression of GLUTag cells under different treatments was examined by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). The SP•ZF diabetic rat model was chosen for in vivo study. After 4 weeks of gastric gavage with 100 or 300 mg kg−1 of silibinin, the physiological indexes of the rats were measured. Cells expressing GLP-1, 8‑hydroxy-2′-deoxyguanosine (8-OHdG), ERα, and/or ERβ in duodenum tissues were detected by immunofluorescence. ResultsThe current study showed that the GLUTag cells preincubated with silibinin activated the transcription factor nuclear erythroid-2 like factor-2 (Nrf2)-antioxidant pathway, reduced reactive oxygen species (ROS) generation, and improved cell survival and GLP-1 content, while the antioxidative effect of silibinin was blocked by the selective ERα antagonist MPP or ERβ antagonist PHTPP in GLUTag cells. Our proteomics data further revealed that ERα or β inactivation reduced glutathione peroxide and proteins associated with endocytosis and reproduction, thus at least partially reversing the protective effect of silibinin. SP•ZF rats received silibinin treatment showed increased serum GLP-1 content and improved glucose homeostasis. Furthermore, silibinin upregulated ERα and β levels and reduced the level of 8-OHdG in GLP-1-positive cells. ConclusionsOur study showed that silibinin improved L-cell mass and function through an ER-mediated antioxidant pathway, and the proteomics analysis revealed for the first time the differential regulation of proteins by PA and silibinin in GLUTag cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call