Abstract

This paper presents an algorithm based fault tolerance method to harden three two-sided matrix factorizations against soft errors: reduction to Hessenberg form, tridiagonal form, and bidiagonal form. These two sided factorizations are usually the prerequisites to computing eigenvalues/eigenvectors and singular value decomposition. Algorithm based fault tolerance has been shown to work on three main one-sided matrix factorizations: LU, Cholesky, and QR, but extending it to cover two sided factorizations is non-trivial because there are no obvious \textit{offline, problem} specific maintenance of checksums. We thus develop an \textit{online, algorithm} specific checksum scheme and show how to systematically adapt the two sided factorization algorithms used in LAPACK and ScaLAPACK packages to introduce the algorithm based fault tolerance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call