Abstract

Metallothioneins (MTs) are a group of metal-binding proteins involved in cell proliferation, differentiation and apoptosis. The MT-2A isoform is generally the most abundant isoform among the 10 known functional MT genes. In the present study, we observed that down-regulation of the MT-2A gene in MCF-7 cells via siRNA-mediated silencing inhibited cell growth by inducing cell cycle arrest in G1-phase (G1-arrest) and a marginal increase in cells in sub-G1-phase. Scanning electron microscopic examination of the cells with silenced expression of MT-2A (siMT-2A cells) revealed essentially normal cell morphology with presence of scattered apoptotic cells. To elucidate the underlying molecular mechanism, we examined the expression of cell cycle related genes in MT-2A-silenced cells and found a higher expression of the ataxia telangiectasia mutated ( ATM) gene concomitant with a lower expression of the cdc25A gene. These data suggest that MT-2A could plausibly modulate cell cycle progression from G1- to S-phase via the ATM/Chk2/cdc25A pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.