Abstract

Whitefly (Bemisia tabaci) is a typical pest that causes severe damage to hundreds of agricultural crops. The trehalose-6-phosphate synthase (TPS) genes, as the key genes in the insect trehalose synthesis pathway, are important for insect growth and development. The whitefly TPS genes may be a main reason for the severe damage and may represent potential targets for the control of whiteflies. In this study, we identified and cloned three TPS genes from B. tabaci MED and found that the BtTPS1 and BtTPS2 genes showed higher expression levels than the BtTPS3 gene. Then, RNA interference (RNAi) of BtTPS1 and BtTPS2 resulted in significant mortality and influenced the expression of related genes involved in energy metabolism and chitin biosynthesis in whitefly adults. Finally, the transgenic tobacco plants showed a significant effect on B. tabaci, and knockdown of BtTPS1 or BtTPS2 led to retarded growth and low hatchability in whitefly nymphs, and caused 90% mortality and decreased the fecundity in whitefly adults. Additionally, the transgenic tobacco with combinatorial RNAi of BtTPS1 and BtTPS2 showed a better efficacy against whiteflies than individual silencing. Our results suggest that silencing of the BtTPS genes can compromise the growth and development of whiteflies, offering not only a new option for whitefly control but also a secure and environmentally friendly management strategy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.