Abstract

ObjectivesShifting macrophages towards an anti-inflammatory state is key in treating osteoarthritis (OA) by reducing inflammation and tissue damage. However, the underlying mechanisms guiding this shift remain largely undefined. STUB1, an E3 ubiquitin ligase, known for its regulatory role in macrophage polarization. This study aims to explore the function and underlying action mechanisms of STUB1 in OA. MethodsAn in vivo OA model was established in rats. Hematoxylin-Eosin and safranin O-fast green staining were performed to reveal the hispathological injuries in knee-joint tissues. Immunohistochemistry and flow cytometry were performed to detect the distribution of M1 and M2 macrophages. The inflammatory response (TNF-α and IL-6 levels) was evaluated by ELISA. In vitro, the interaction between STUB1 and NFR2 was determined by CO-IP and pull-down assays. After treated with LPS (an in vitro model of OA), the viability and apoptosis of chondrocytes were measured by CCK-8 and flow cytometry, respectively. ResultsSilencing STUB1 alleviated OA in rats, as indicated by reduced subchondral bone thickness, knee synovitis score, histopathological damages, and inflammatory response. STUB1 silencing also decreased M1 macrophages and increased M2 macrophages in both in vivo and in vitro settings. NRF2 was identified as a target of STUB1, with STUB1 mediating its ubiquitination. Silencing NRF2 reversed the effects of STUB1 silencing on inducing M2 macrophage polarization. Furthermore, silencing STUB1 upregulated NRF2 expression in LPS-treated chondrocytes, promoting cell viability and inhibiting apoptosis. ConclusionSilencing STUB1 induces M2 macrophage polarization by inhibiting NRF2 ubiquitination, thereby contributing to the mitigation of OA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call