Abstract

Enhanced recombinant protein expression was achieved in Salinas lettuce and commercial lettuce by designing a unique RNAi that knockdown the gene-silencing mechanism in transient assays. Improved yields of recombinant proteins (RP) are necessary for protein-production efficiency and ease of purification. Achieving high yield in non-tobacco plants will enable diverse plants to be used as hosts in transient protein-expression systems. With improved protein yield, lettuce (Lactuca sativa) could take the lead as a plant host for RP production. Therefore, this study aimed to improve RP production in lettuce var. Salinas by designing a single RNA interference (RNAi) construct targeting LsRDR1 and LsRDR6 using the Tsukuba system vector. Two RNAi constructs, RNAi-1 and RNAi-2, targeting common regions of LsRDR1 and LsRDR6 with 75% and 76% similarity, respectively, were employed to evaluate simultaneous gene silencing. Quantitative transcription analysis demonstrated that both RNAi constructs effectively knocked down LsRDR6 and LsRDR1, but not LsRDR2, at both 3 and 5days post-infiltration (dpi), with RNAi-1 exhibited slightly higher efficiency. Based on the protein yield, co-expression of RNAi-1 with enhanced green fluorescent protein (EGFP) increased EGFP expression by approximately 4.9-fold and 3.7-fold at 3dpi and 5dpi, respectively, compared to control. A similar but slightly lower increase (2.4-fold and 2.33-fold) was observed in commercial lettuce at 3and 5 dpi, respectively. To confirm these results, co-infiltration with Bet v 1, a major allergen from birch pollen, resulted in a 2.5-fold increase in expression in Salinas lettuce at 5 dpi. This study marks a significant advancement in enhancing transient protein production in lettuce, elevating its potential as a host for recombinant protein production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.