Abstract

Metallothionein-I (MT-I) gene is silenced by methylation of CpG islands in mouse lymphosarcoma P1798 cells but not in the thymus, the cell type from which the tumor was derived. Bisulfite genomic sequencing revealed that all 21 CpG dinucleotides present within -216 bp to +1 bp with respect to transcription start site are methylated in the tumor cell line, but none is methylated in the thymus. The lymphosarcoma cells induced MT-I in response to heavy metals only after demethylation with 5-azacytidine (5-AsaC). The electrophoretic mobility shift assay using specific oligonucleotide probes showed that the key transcription factors regulating MT-I gene (e.g., MTF-1, Sp 1 and MLTF/USF) are active in P1798 cells. In vivo footprinting of the proximal promoter region showed that none of the metal regulatory elements (MREs) or MLTF/USF are occupied in response to heavy metals. Demethylation of the lymphosarcoma cells with 5-AzaC resulted in constitutive footprinting at MLTF/ARE, and zinc-inducible footprinting at MRE-c, MRE-d and MRE-e sites. Demethylation of just 10-20% of the CpG islands was sufficient to render the gene inducible by cadmium or zinc. The MT-I induction persisted in the cancer cells for several generations even after withdrawal of 5-AzaC from the culture medium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call