Abstract
ABSTRACTObjective: To explore the effects of long non-coding RNA (lncRNA) brain-derived neurotrophic factor anti-sense (BDNF-AS) on the Aβ25-35-induced neurotoxicity in PC12 cells.Methods: PC12 cells were induced by Aβ25-35 to construct cell injury models of Alzheimer’s disease (AD), and then transfected with siRNA-BDNF-AS. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to detect the expressions of BDNF-AS and BDNF. Besides, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Hoechst33342 staining were utilized to analyze the cell viability and apoptosis, respectively, Western blotting to evaluate the protein expressions, immunofluorescence to assess the Cytochrome C (Cyt C) release, and Rhodamine 123 (Rh123) to measure the mitochondrial membrane potential (MMP).The evaluation of oxidative stress was conducted via the determination of the levels of reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT).Results: Aβ25-35 apparently increased BDNF-AS but decreased BDNF in PC12 cells, which also reduced viability and induced apoptosis of PC12 cells. Silencing of BDNF-AS could significantly up-regulate BDNF in Aβ25-35-induced PC12 cells, with the elevated cell viability. Moreover, silencing BDNF-AS inhibited the apoptosis of Aβ25-35-induced PC12 cells, suppressed the release of Cyt C, reduced the expression of cleaved caspase-3 and Bax, and lowered the mean fluorescence intensity (MFI) of Rh123, but it elevated the expression of Bcl-2. Besides, silencing BDNF-AS also reduced ROS intensity and MDA content, but enhanced the activities of SOD and CAT.Conclusion: Silencing BDNF-AS exerts protective functions to increase the viability, inhibit the apoptosis and oxidative stress of Aβ25-35-induced PC12 cells by negative regulation of BDNF.Abbreviations: Aβ25–35: amyloid beta peptide 25–35; AD: Alzheimer’s disease; LncRNA BDNF–AS: long non–coding RNA brain–derived neurotrophic factor anti-sense; OS: Oxidative stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.