Abstract

ICERs proteins (Inducible cAMP Early Repressors) are the most effective endogenous repressors of CREB/CREM/ATF transcription factors family (CREB-cAMP Responsive Element Binding protein, CREM-cAMP Responsive Element Modulator, ATF-Activating Transcription Factor) that have repeatedly been shown to have a prosurvival function. It has been reported previously that neuronal death is accompanied by increased expression of ICERs and, furthermore, their overexpression provokes neuronal cell death in culture. However, it was not explained whether endogenously activated by proapoptotic stimuli ICERs contribute to the neuronal cell death. Herein, we have examined the involvement of endogenous ICERs in the apoptosis by checking whether it is possible to protect neurons from cell death by blocking the ICER gene. We applied two different in vitro models of neuronal death of primary neuronal cultures: excitotoxic death of neurons derived from dentate gyrus, and cortical cell loss provoked by trophic deprivation. Using the lentiviral vector (LV) to deliver shRNA, specifically silencing ICERs, but not other CREM proteins, we have found that silencing of ICERs enhances the CRE-driven transcription and exerts a mild, although significant, neuroprotective effect in both models. Since we demonstrated that silencing of endogenous ICERs have protective effect on neurons exposed to apoptosis-provoking conditions, targeting ICERs might be a novel strategy to prevent neuronal loss during degenerative processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call