Abstract
Silencing the expression of human papillomavirus (HPV) oncoproteins should have therapeutic benefits for cervical cancer. The authors' objective was to study RNA interference of the HPV 18 E6/E7 bicistronic mRNA with E6 small interfering RNA (siRNA) and E7 siRNA and determine the effect of each siRNA on oncoprotein expression, resultant cell growth, and downstream molecular effects. RNA interference was used to knockdown HPV 18 E6 and E7 oncoproteins on the HPV 18 positive cervical cancer cell lines HeLa and C4I. Western blotting was used to assay for each oncoprotein expression and select downstream molecular targets. Cell cycle analyses, cell viability assays, and colony formation assays were performed to determine the effect of treatment by both HPV 18 E6 siRNA and E7 siRNA. The transfection reagent oligofectamine and Tax siRNA were used as negative controls. Transfection with E6 siRNA caused complete loss of E6 but not E7 oncoprotein. However, E7 siRNA induced complete loss of both E6 and E7 oncoproteins. E6 siRNA mediated the reexpression of p53 protein and a moderate decrease in phosphorylated retinoblastoma protein expression (pRb), resulting in decreased colony formation. Transfection with E7 siRNA mediated a robust increase in p53 expression and complete loss of pRb, resulting in a marked decrease in colony formation compared to the E6 siRNA (P =.001). Flow cytometry revealed significantly increased apoptotic cells with E7 siRNA compared to E6 siRNA and control. RNA interference targeting the E7 portion of the bicistronic HPV 18 mRNA can silence both E6 and E7 oncoproteins and is most effective in cervical cancer growth inhibition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.