Abstract
Mutations in the gene encoding the single transmembrane receptor multiple epidermal growth factor-like domain 10 (MEGF10) cause an autosomal recessive congenital muscle disease in humans. Although mammalian MEGF10 is expressed in the central nervous system as well as in skeletal muscle, patients carrying mutations in MEGF10 do not show symptoms of central nervous system dysfunction. drpr is the sole Drosophila homolog of the human genes MEGF10, MEGF11, and MEGF12 (JEDI, PEAR). The functional domains of MEGF10 and drpr bear striking similarities, and residues affected by MEGF10 mutations in humans are conserved in drpr. Our analysis of drpr mutant flies revealed muscle degeneration with fiber size variability and vacuolization, as well as reduced motor performance, features that have been observed in human MEGF10 myopathy. Vacuolization was also seen in the brain. Tissue-specific RNAi experiments demonstrated that drpr deficiency in muscle, but not in the brain, leads to locomotor defects. The histological and behavioral abnormalities seen in the affected flies set the stage for further studies examining the signaling pathway modulated by MEGF10/Drpr in muscle, as well as assessing the effects of genetic and/or pharmacological manipulations on the observed muscle defects. In addition, the absence of functional redundancy for Drpr in Drosophila may help elucidate whether paralogs of MEGF10 in humans (eg, MEGF11) contribute to maintaining wild-type function in the human brain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.