Abstract
Complement regulatory proteins (CD55 and CD59) were known to be expressed in many tumors and tumor cell lines including colorectal carcinoma, and were proposed as immunotherapy targets, however whether knocking down of CD55 and CD59 will affect the sensitivity of HT-29 cells to chemotherapy drugs for example, 5-Fluorouracil and Oxaliplatin and their possible mechanisms haven't been studied. To address this question, SiRNAs targeting CD55 and CD59 were chemically synthesized and transfected into HT-29 cells by lipofectamine. HT-29 growth curves of CD55 and CD59 knockdown cells were detected by MTT assay, HT29 inhibition curves to chemotherapy drugs (5-Fu and Oxaliplatin) were also assayed, in addition, chemotherapy sensitivity changes of HT29 affected by CD55 and CD59 knockdown were equally detected. Complement mediated lysis was examined by calcein-AM. We found that silencing CD59 in HT-29 cells could significantly enhance their sensitivity to 5-FU (P < 0.05) and Oxaliplatin (P < 0.05), and significantly reduced their IC50 concentration. On the contrary, knocking down of CD55 could inhibit HT-29 growth (P < 0.05). Mechanisms included increasing apoptosis rate of HT-29 by CD59 knocking down and G1/G0 blocking by silencing CD55. Our results thus shed light on the novel mechanism of chemotherapy resistance and provide an alternative strategy to overcome the resistance problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.