Abstract

Arginine and nitric oxide (NO) are important mediators of tumorigenesis in various types of cancer. Dysregulation of NO content by argininosuccinate lyase (ASL) has been previously demonstrated to inhibit the proliferation of liver and breast cancer cells. However, the function of ASL in colon cancer is not well defined. The present study aimed to determine the effect of ASL on colon cancer. Western blot analysis indicated that ASL expression was induced by endoplasmic reticulum stress in HCT116 and SW480 colon cancer cells. Additionally, the expression of ASL in colon cancer tissues was enhanced compared with that in the adjacent normal tissues, and the patients with colon cancer with higher ASL expression exhibited poorer survival rates. Transfection of ASL-targeting short hairpin RNA (shRNA) into HCT116 cells inhibited cell proliferation and decreased anchorage-independent growth in a soft agar assay. In addition, when injected subcutaneously into NOD/SCID mice, stable transfectant ASL-downregulated HCT116 cells exhibited decreased invivo tumorigenic ability. Flow cytometric analysis of cell cycle progression indicated that ASL-targeting shRNA induced G2/Marrest, and western blot analysis showed that the inhibition of ASL was accompanied by cyclinA2 degradation. Furthermore, ASL-targeting shRNA resulted in increased autophagosomes and decreased NO levels. Inhibition of NO by the NO synthase inhibitor L-NMMA significantly reduced cell proliferation and colony formation. In summary, the results of the present study indicated that ASL-targeting shRNA-induced growth inhibition is associated with decreased cyclinA2 expression and NO content in colon cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.