Abstract
Synthesis of protoporphyrin IX (PpIX) by malignant cells is essential for the success of ALA-based photodynamic therapy (PDT). Two key enzymes that were described as affecting PpIX accumulation during ALA treatment are porphobilinogen deaminase (PBGD) and ferrochelatase. Here, we show that down regulation of ALA dehydratase (ALAD) expression and activity by specific shRNA induced a marked decrease in PpIX synthesis in K562 erythroleukemic cells. Photo-inactivation efficacy following ALA-PDT was directly correlated with ALAD-silencing and cellular levels of PpIX. MTT metabolism following ALA-PDT was shown to be 60% higher in ALAD-silenced cells in comparison to control cells, indicating that mitochondria were protected in the silenced cells. Morphological analysis by scanning electron microscopy (SEM) of cells treated by ALA-PDT showed no morphological changes in ALAD-silenced cells, in contrast to controls exhibiting cell deformations and lysis. Membrane integrity following ALA-PDT was kept intact and undamaged in ALAD-silenced cells as examined by Annexin V-FITC/PI staining and LDH-L leakage. We conclude that ALAD, although it is present in the cell at abundant levels, has a major and limiting role in regulating PpIX synthesis and ALA-PDT outcome.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.