Abstract

BackgroundSugarcane (Saccharum spp.) covers vast areas of land (around 25 million ha worldwide), and its processing is already linked into infrastructure for producing bioethanol in many countries. This makes it an ideal candidate for improving composition of its residues (mostly cell walls), making them more suitable for cellulosic ethanol production. In this paper, we report an approach to improving saccharification of sugarcane straw by RNAi silencing of the recently discovered BAHD01 gene responsible for feruloylation of grass cell walls.ResultsWe identified six BAHD genes in the sugarcane genome (SacBAHDs) and generated five lines with substantially decreased SacBAHD01 expression. To find optimal conditions for determining saccharification of sugarcane straw, we tried multiple combinations of solvent and temperature pretreatment conditions, devising a predictive model for finding their effects on glucose release. Under optimal conditions, demonstrated by Organosolv pretreatment using 30% ethanol for 240 min, transgenic lines showed increases in saccharification efficiency of up to 24%. The three lines with improved saccharification efficiency had lower cell-wall ferulate content but unchanged monosaccharide and lignin compositions.ConclusionsThe silencing of SacBAHD01 gene and subsequent decrease of cell-wall ferulate contents indicate a promising novel biotechnological approach for improving the suitability of sugarcane residues for cellulosic ethanol production. In addition, the Organosolv pretreatment of the genetically modified biomass and the optimal conditions for the enzymatic hydrolysis presented here might be incorporated in the sugarcane industry for bioethanol production.

Highlights

  • IntroductionSugarcane (Saccharum spp.) covers vast areas of land (around 25 million ha worldwide), and its processing is already linked into infrastructure for producing bioethanol in many countries

  • Sugarcane (Saccharum spp.) covers vast areas of land, and its processing is already linked into infrastructure for producing bioethanol in many countries

  • Identification of BAHD acyl‐coenzyme A (CoA) gene family members and generation of silencing lines in sugarcane To identify BAHD01 gene in the sugarcane genome [32], we analyzed the phylogeny of BAHD genes in the ‘Mitchell Clade’ [20] for sugarcane, Setaria, Brachypodium, maize, rice, and Arabidopsis (Fig. 1a)

Read more

Summary

Introduction

Sugarcane (Saccharum spp.) covers vast areas of land (around 25 million ha worldwide), and its processing is already linked into infrastructure for producing bioethanol in many countries This makes it an ideal candidate for improving composition of its residues (mostly cell walls), making them more suitable for cellulosic ethanol production. The processing of sugarcane generates two major biomass residues: the fibrous fraction following juice extraction from the stalks (bagasse); and the harvest residue, consisting of green tops and older leaves, known as straw [2, 3]. Both biomasses can be used as feedstock to generate heat and electricity and to produce cellulosic ethanol. Increasing the efficiency and yield of this sugarcane straw conversion to bioethanol (as well as bagasse) is a major target to increase economic viability of bioethanol making it more competitive compared to fossil fuels

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.