Abstract

Mitogen-activated protein kinases (MAPKs) play pivotal roles in development and environmental interactions in eukaryotes. Here, we studied the function of a MAPK, NaMPK4, in the wild tobacco species Nicotiana attenuata. The NaMPK4-silenced N. attenuata (irNaMPK4) attained somewhat smaller stature, delayed senescence, and greatly enhanced stomatal conductance and photosynthetic rate, especially during late developmental stages. All these changes were associated with highly increased seed production. Using leaf epidermal peels, we demonstrate that guard cell closure in irNaMPK4 was strongly impaired in response to abscisic acid and hydrogen peroxide, and consistently, irNaMPK4 plants transpired more water and wilted sooner than did wild-type plants when they were deprived of water. We show that NaMPK4 plays an important role in the guard cell-mediated defense against a surface-deposited bacterial pathogen, Pseudomonas syringae pv tomato (Pst) DC3000; in contrast, when bacteria directly entered leaves by pressure infiltration, NaMPK4 was found to be less important in the resistance to apoplast-located Pst DC3000. Moreover, we show that salicylic acid was not involved in the defense against PstDC3000 in wild-type and irNaMPK4 plants once it had entered leaf tissue. Finally, we provide evidence that NaMPK4 functions differently from AtMPK4 and AtMPK11 in Arabidopsis (Arabidopsis thaliana), despite their sequence similarities, suggesting a complex functional divergence of MAPKs in different plant lineages. This work highlights the multifaceted functions of NaMPK4 in guard cells and underscores its role in mediating various ecologically important traits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call