Abstract
Background: Hemangioma (Hem) is a benign tumor commonly seen in infancy with a relative high morbidity. Human umbilical vein endothelial cell (HUVEC)-derived extracellular vesicles (EVs) are actively participated in Hem. Therefore, this study is designed to figure out the underlying mechanism of HUVEC-derived EVs in Hem. Methods: Initially, EVs were separated from HUVECs and identified. HUVEC-derived EVs in normoxia or hypoxia were then cultivated with Hem endothelial cells (HemECs) to test the proliferation, apoptosis, and migration of HemECs. Microarray analysis was performed to select microRNAs (miRs) with differential expression. miR-210 in hypoxia-induced HUVECs was silenced, and the relevant EVs were extracted and then co-cultured with HemECs to perform biological effect experiments. Then, the target relation between miR-210 and homeobox A9 (HOXA9) was identified by the dual luciferase reporter gene assay and RNA immunoprecipitation assay. Moreover, xenograft transplantation was also applied to confirm the in vitro experiments. Results: Hypoxia-induced HUVECs promoted release of EVs, which were absorbed by HemECs. Hypoxia-induced HUVEC-EVs promoted HemEC proliferation and migration and inhibited apoptosis. miR-210 from the hypoxia-induced HUVEC-EVs was highly expressed and promoted HemEC growth. Silencing miR-210 expression in the hypoxia-induced HUVEC-EVs suppresses Hem development in vivo. In addition, miR-210 targeted HOXA9. Conclusion: Silencing miR-210 in HUVEC-derived EVs could suppress Hem by targeting HOXA9. This investigation may provide novel insights for Hem treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.