Abstract

Atherosclerosis (AS) is a primary cause of cardiovascular diseases. This study investigated the mechanism of methyltransferase-like 3 (METTL3) in AS plaques via modulating the phenotypic transformation of vascular smooth muscle cells (VSMCs). AS mouse models and MOVAS cell models were established through high-fat diet and the treatment of ox-LDL, respectively. METTL3 expression in AS models was detected via RT-qPCR and Western blot. The AS plaques, lipid deposition, and collagen fibers were examined via histological staining. The levels of Ly-6c, α-SMA, and OPN were examined via Western blot. The blood lipid indexes in mouse aortic tissues were determined using kits. The proliferation and migration of MOVAS cells were detected via CCK-8 and Transwell assays. The m6A modification level of mRNA was quantified. The binding relationship between pri-miR-375 and DGCR8, and the enrichment of m6A on pri-miR-375 were detected via RIP. The binding relationship between miR-375-3p and 3-phosphoinositide-dependent protein kinase-1 (PDK1) was verified via dual-luciferase assay. Joint experiments were designed to investigate the role of miR-375-3P/PDK1 in the phenotypic transformation of VSMCs. METTL3 was highly expressed in AS. Silencing METTL3 alleviated AS progression and stabilized AS plaques in mice, and limited the phenotypic transformation of VSMCs induced by ox-LDL. Silencing METTL3 inhibited m6A level and decreased the binding of DGCR8 to pri-miR-375 and further limited miR-375-3p expression. miR-375-3p targeted PDK1 transcription. miR-375-3p upregulation or PDK1 downregulation facilitated the phenotypic transformation of VSMCs. METTL3-mediated m6A modification promoted VSMC phenotype transformation and made AS plaques more vulnerable via the miR-375-3p/PDK1 axis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call