Abstract
Colorectal cancers (CRCs) account for nearly 10% of all cancer deaths in industrialized countries. Recent evidence points to a central role for the nuclear receptor liver receptor homolog-1 (LRH-1) in intestinal tumorigenesis. Interaction of LRH-1 with the Wnt/β-catenin pathway, highly active in a critical subpopulation of CRC cells, underscores the importance of elucidating LRH-1's role in this disease. Reduction of LRH-1 diminishes tumor burden in murine models of CRC; however, it is not known whether LRH-1 is required for tumorigenesis, for proliferation, or for both. In this work, we address this question through shRNA-mediated silencing of LRH-1 in established CRC cell lines. LRH-1 mRNA knockdown results in significantly impaired proliferation in a cell line highly expressing the receptor and more modest impairment in a cell line with moderate LRH-1 expression. Cell-cycle analysis shows prolongation of G0/G1 with LRH-1 silencing, consistent with LRH-1 cell-cycle influences in other tissues. Cluster analysis of microarray gene expression demonstrates significant genome wide alterations with major effects in cell-cycle regulation, signal transduction, bile acid and cholesterol metabolism, and control of apoptosis. This study demonstrates a critical proproliferative role for LRH-1 in established colon cancer cell lines. LRH-1 exerts its effects via multiple signaling networks. Our results suggest that selected CRC patients could benefit from LRH-1 inhibitors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.