Abstract

Objective: This study aimed to explore the effect of silencing hTERT on the CSC-like characteristics and radioresistance of CNE-2R cells.Results: Silencing hTERT suppressed CNE-2R cell proliferation and increased the cell apoptosis rate and radiosensitivity in vitro. Moreover, it could also inhibit the growth of xenografts and increase the apoptosis index and radiosensitivity in vivo. Further study discovered that after silencing hTERT, telomerase activity in CNE-2R cells was markedly suppressed, along with remarkably down-regulated stem cell-related protein levels both in vitro and in vivo.Conclusion: Silencing hTERT can suppress the CSC-like characteristics of CNE-2R cells to enhance their radiosensitivity, revealing that hTERT may become a potential target for treating radioresistant NPC.Methods: An RNAi lentiviral vector specific to the hTERT gene was constructed to infect CNE-2R cells, the hTERT silencing effect was verified through qPCR and Western blot assays, and telomerase activity was detected by PCR-ELISA. Moreover, radiosensitivity in vitro was detected through colony formation assays, CCK-8 assays and flow cytometry. Tumor growth and radioresistance were also evaluated using xenograft models, while the apoptosis index in xenografts was measured through TUNEL assay. Levels of stem cell-related proteins were determined in vitro and in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.