Abstract
Extracellular matrix (ECM) metabolism balance is essential for maintaining tissue structure and function. However, the complex crosstalk between the ECM, resident cellular, and tissue microenvironment makes long-term maintenance of ECM metabolism balance in an abnormal microenvironment difficult to achieve. Herein, an injectable circRNA silencing-hydrogel microsphere (psh-circSTC2-lipo@MS) is constructed by grafting circSTC2 silencing genes-loaded 1,2-dioleoyl-3-trimethylammonium-propane/cholesterol/1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOTAP/Chol/DOPE) cationic liposomes on methacrylated hyaluronic acid (HAMA) microspheres via amide bonds, which could silence pathological genes in nucleus pulposus (NP) cells to regulate ECM metabolism balance in the nutrient-restricted microenvironment, thereby inhibiting intervertebral disc (IVD) degeneration. HAMA microspheres prepared by microfluidics displayed good degradability, swellability, and injectability. And lipoplexes can be efficiently loaded and released for 27 d through chemical grafting. Cocultured under nutrient-restricted conditions for 72 h, psh-circSTC2-lipo@MS significantly promotes the synthesis of ECM-related proteins and inhibits the secretion of ECM catabolism-related proteases in NP cells. In the rat IVD nutrient-restricted model, local injection of psh-circSTC2-lipo@MS promotes ECM synthesis and restored NP tissue after 8 weeks. In summary, this study confirms that psh-circSTC2-lipo@MS as a safe and controllable targeted gene delivery system has great potential in regulating the ECM metabolism balance under an abnormal microenvironment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.