Abstract
BackgroundProtein 4.1R (EPB41) is the main cytoskeleton component of the erythrocyte membrane and may be involved in cell migration and adhesion. Previous research discovered overexpression of 4.1R in the thymus of patients with myasthenia gravis (MG). The protein 4.1R on dendritic cells may play a pivotal role in MG pathogenesis.This research investigated the effects of small interfering RNA 4.1R-siRNA on cell migration, cell cycle, and surface antigen expression of DC2.4 mouse dendritic cells, thus providing a new direction for the study of MG pathogenesis.Material/MethodsThree 4.1R-specific siRNAs were designed, and the expression of 4.1R was detected by real-time PCR at the mRNA level and Western blot analysis at the protein level to select out the most efficient siRNAs. Changes in cell morphology were observed and cell migration ability was analyzed by Transwell assay. Cell cycle and surface antigen were both analyzed by flow cytometry.ResultsThe cell bodies of DC2.4 diminished, the synapses were increased, and protuberance became more obvious after being transfected with 4.1R-siRNA. After knockdown of 4.1R, cell migration ability decreased and the proportion of cells in S phase significantly increased (both P<0.05). The expression levels of MHCII, CD80, and CD86 were all increased in DC2.4 cells (all <0.05).ConclusionsSilencing the expression of 4.1R in dendritic cells resulted in inhibition of migration ability, cell cycle arrest, and increase in surface antigens, which suggest that 4.1R participates in MG autoimmunity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Medical science monitor : international medical journal of experimental and clinical research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.