Abstract

Intervertebral disc degeneration (IVDD) is a common disorder associated with chronic inflammation and cell death. In this study, an IVDD rat model was created through Interleukin-1β (IL-1β) injection. The degeneration of intervertebral disc tissues was assessed using magnetic resonance imaging (MRI), followed by hematoxylin and eosin (H&E) and terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) staining. RNA sequencing was performed to identify differentially expressed genes (DEGs) between the IVDD model and control rats. The expression levels of DEGs (DEAD-box polypeptide 3 (DDX3), lysine-specific demethylase 5D (KDM5D), interferon-induced gene-1 (IFIT1), ribosomal protein S10 (RPS10), tenomodulin (TNMD), and pentraxin 3 (PTX3)) were measured by real-time quantitative polymerase chain reaction (RT-qPCR). The regulatory effect of DDX3 on pyroptosis in IL-1β-treated nucleus pulpous (NP) cells was assessed after transfection with siRNA of DDX3. A total of 601 DEGs were identified from the IVDD model rat, and were abundant in extracellular matrix (ECM) organization, ECM-receptor interaction, and inflammatory pathways, including the PI3K-Akt, TNF, and AMPK signaling pathways. DDX3, KDM5D, and IFIT1 levels were notably elevated, whereas RPS10, TNMD, and PTX3 levels were decreased in the IL-1β-induced IVDD rat model. Moreover, silencing DDX3 promoted cell proliferation and abolished IL-1β-induced cell apoptosis and pyroptosis. This study revealed the role of DDX3 in IVDD pyroptosis, providing potential target for IVDD management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call