Abstract

Circular-RNA friend leukemia virus integration 1 (circ-FLI1; hsa_circ_0000370) is a noninvasive biomarker for the diagnosis of colon carcinoma (CC). Herein, we intended to investigate its functions and competing endogenous RNA (ceRNA) mechanisms in CC cells. In terms of expression status, circ-FLI1 was abnormally upregulated in CC patients’ tumors and cells, paralleled with DKC1 upregulation and miR-197-3p downregulation. Most strikingly, there was a direct target relationship between miR-197-3p and circ-FLI1 or DKC1 based on the starbase database, dual-luciferase reporter assay, and RNA immunoprecipitation. Functionally, the colony formation assay, MTS method, fluorescence-activated cell sorting method, cell cycle and apoptosis assays, and transwell assays were performed, and the results revealed that interfering circ-FLI1 and re-expressing miR-197-3p could restrict colony formation, cell viability, cell cycle progression, and migration/invasion of CC cells with apoptosis rate elevation; besides, they promoted oxaliplatin (L-OHP)-induced cell viability inhibition. Furthermore, there were counteractive effects between circ-FLI1 silencing and miR-197-3p depletion, miR-197-3p overexpression and DKC1 restoration on regulating CC cell functions and L-OHP resistance. With a xenograft tumor model, the anti-growth role of circ-FLI1 silencing was also found in vivo with or without L-OHP treatment. Collectively, we demonstrated that circ-FLI1 might confer L-OHP resistance and malignant progression of CC presumably through the circ-FLI1/miR-197-3p/DKC1 ceRNA axis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call