Abstract

Diabetic retinopathy is a severe diabetic complication and a major cause of blindness. In this study, we explored the role of circ_0001879 in retinal vascular dysfunction under diabetic conditions. Human retinal microvascular endothelial cells (HRMECs) were divided into normal glucose group (NG, 5.5mmol/L d-glucose), high glucose group (HG, 25mmol/L d-glucose), and osmotic control group (5.5mmol/L d-glucose+19.5mmol/L mannitol). The expression of circ_0001879 and miR-30-3p was assessed via qRT-PCR. The circ_0001879/miR-30-3p roles in retinal vascular dysfunction were investigated through Cell Counting Kit-8 and Transwell assay. Bioinformatics analysis and luciferase reporter assays were applied to examine interactions between circ_0001879 and miR-30-3p in HRMECs. The relative circ_0001879 expression was remarkably increased in diabetic retinas group than that in the control group. Silencing circ_0001879 suppressed the proliferation and migration of HRMECs under high-glucose conditions. In addition, circ_0001879 acted as a binding platform and miRNA sponge for miR-30-3p. Circ_0001879 modulated the function of HRMECs via targeting miR-30-3p. Silencing circ_0001879 inhibited the proliferation and migration of HRMECs under high-glucose conditions via modulating miR-30-3p, which might shed new light on a novel potentially marker and molecular therapeutic target for diabetic retinopathy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call