Abstract

The cost of communication is a substantial factor affecting the scalability of many distributed applications. Every message sent can incur a cost in storage, computation, energy, and bandwidth. Consequently, reducing the communication costs of distributed applications is highly desirable. The best way to reduce message costs is by communicating without sending any messages whatsoever. This article initiates a rigorous investigation into the use of silence in synchronous settings, in which processes can fail. We formalize sufficient conditions for information transfer using silence, as well as necessary conditions for particular cases of interest. This allows us to identify message patterns that enable communication through silence. In particular, a pattern called a silent choir is identified, and shown to be central to information transfer via silence in failure-prone systems. The power of the new framework is demonstrated on the atomic commitment problem (AC). A complete characterization of the tradeoff between message complexity and round complexity in the synchronous model with crash failures is provided, in terms of lower bounds and matching protocols. In particular, a new message-optimal AC protocol is designed using silence, in which processes decide in three rounds in the common case. This significantly improves on the best previously known message-optimal AC protocol, in which decisions were performed in Θ( n ) rounds. And in the naked light I saw Ten thousand people, maybe more People talking without speaking … People writing songs that voices never share And no one dared Disturb the sound of silence Paul Simon, 1964

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.