Abstract
Negative bias temperature instability (NBTI) and stress-induced leakage current (SILC) both are more serious due to the aggressive scaling lowering of devices. We investigate the SILC during NBTI stress in PMOSFETs with ultra-thin gate dielectrics. The SILC sensed range from -1 V to 1 V is divided into four parts: the on-state SILC, the near-zero SILC, the off-state SILC sensed at lower positive voltages and the one sensed at higher positive voltages. We develop a model of tunnelling assisted by interface states and oxide bulk traps to explain the four different parts of SILC during NBTI stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.