Abstract

Epoxysilane-treated muscovite (ETM) was used as reinforcing filler to 3D-printed acrylonitrile butadiene styrene (ABS) via fused deposition modeling (FDM). Its effects to the mechanical and thermal properties of ABS were investigated. ETM was loaded at 1, 3, and 5wt%. ABS/ETM composites were characterized via scanning electron microscopy (SEM), tensile test, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Mechanical reinforcement of ABS was observed for ABS/ETM composites loaded at 1 and 3 wt% wherein it was noted that the tensile strength and elastic modulus increased by up to 83.6% and 76.6%, respectively. Reinforcement was brought by interfacial adhesion of ETM with the ABS matrix. There was a sharp decline in mechanical properties for ABS/ETM composites loaded at 5wt% due to agglomeration of ETM in the matrix and discontinuities in the printed layers. The glass transition temperature (Tg) of ABS increased and the onset of its degradation shifted towards higher temperatures with the addition of ETM. It can be concluded that the addition of ETM to ABS for FDM 3D printing improved its mechanical and thermal properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call