Abstract

A series of novel silane-based hyper-cross-linked porous polymers was prepared through the Friedel–Crafts alkylation reaction of dimethyldiphenylsilane as the monomer and formaldehyde dimethyl acetal as the external cross-linker. The structures of the polymers were confirmed by FTIR and solid-state cross-polarization magic-angle spinning 13C NMR. We investigated the porous polymers with different ratios of dimethyldiphenylsilane to formaldehyde dimethyl acetal. Porous properties were determined by nitrogen, carbon dioxide and hydrogen adsorptions. The results revealed that the porous materials possessed surface areas from 742 to 1205 m2 g−1 with the increasing amount of formaldehyde dimethyl acetal. Moreover, this material exhibited high thermal stabilities, good CO2 capture, and H2 storage capacities. The material was also used as adsorbent for organic dyes in aqueous solution and showed an excellent adsorption capacity of 952 mg g−1 for Congo red dye. These results suggest that the silane-based hyper-cross-linked porous polymers are promising materials for CO2 capture, H2 storage, and water treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call