Abstract

Siloxane coatings for surfaces are essential in many scientific and industrial applications. We describe a straightforward gas-phase evaporation technique in inert atmosphere and introduce a practical and reliable silanization protocol adaptable to different silane types. The primary aim of depositing ultrathin siloxane films on surfaces is to enable a reproducible and homogenous surface functionalization without agglomeration effects during the layer formation. To realize high-quality and large-area coatings, it is fundamental to understand the reaction conditions of the silanes, the process of the siloxane layer formation, and the possible influence of the substrate morphology. We used three typical silane types to exemplify the potential and versatility of our process: aminopropyltriethoxysilane, glycidoxypropyltrimethoxysilane, and 1 H,1 H,2 H,2 H-perfluorooctyl-trichlorosilane. The ultrathin siloxane layers, which are generally difficult to characterize, were precisely investigated with high-resolution surface-characterization methods to verify our concept in terms of reproducibility and coating quality. Our results show that this gas-phase evaporation protocol is easily adaptable to all three, widely used silane types also enabling a large-area upscale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.