Abstract

In this study, thermal, mechanical and fire retardant properties of silane-crosslinked low-density polyethylene (XLPE) containing ethylene-vinylacetate (EVA) copolymer, alumina trihydrate (ATH) and antimony trioxide (Sb2O3) have been studied. Samples were prepared in a single-screw extruder and the silane type was vinyltrimethoxy silane (VTMOS). Incorporation of ATH and Sb2O3 into polyethylene at sufficiently high loading introduces good fire retardancy expressed by limiting oxygen index (LOI). However, some tensile properties decreased. These limitations could be overcome by silane crosslinking. By incorporation of EVA into XLPE gel content increased and curing time decreased. Differential scanning calorimetric (DSC) analysis indicated the existence of two distinct melting endothermic peaks corresponding to two different crystalline phases. Results from mechanical properties showed that mechanical properties of XLPE/EVA blends improve by increasing EVA content up to 15 wt%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.