Abstract

The effects of whole-plant corn silage (CS) particle size and long unprocessed grass hay (LH) supplementation on milk yield, chewing activity, and ruminal digestion in dairy cows were evaluated in 2 experiments. In Experiment 1, corn silage harvested at fine (6mm; FCS) or coarse (23mm; CCS) theoretical cut length were fed to 22 lactating Holstein cows. Treatments were 2 total mixed rations containing 58% of dry matter (DM) as FCS or CCS. Diet DM intake tended to be higher in cows fed FCS than those fed CCS (23.4 vs. 22.1kg/d). However, milk yield and composition, body condition score, and plasma metabolite concentrations were not affected by the dietary treatments. In the second experiment, 5 cannulated Holstein cows were used in a 5×5 Latin square design to evaluate the effects of the addition of LH to the diets evaluated in Experiment 1 on chewing activity and ruminal digestion. Treatments were 5 total mixed rations: FCS-based diet plus the addition of 0, 5, or 10% LH (DM basis) and CCS-based diet plus 0 or 5% LH. Long hay addition linearly decreased DM intake in cows fed FCS-based diets (25.0 to 21.7 kg/d), but increased DM intake in those fed CCS-based diets (22.7 to 27.1 kg/d). The intake of neutral detergent fiber (NDF) increased with LH addition in CCS-based diets (7.6 vs. 9.4 kg/d). Rumination time increased (16.8 to 21.0 min/kg of DM intake) when LH was added to FCS-based diets, but it decreased when included in CCS-based diets (18.8 vs. 12.9 min/kg of DM intake). Ruminal pH was higher (5.9 vs. 5.7) and lag-time for in situ NDF disappearance was shorter (3.5 vs. 8.7h) for cows fed CCS compared with cows fed FCS. The rate of NDF disappearance tended to be higher for the CCS-based diet with 5% LH than for the diet with 0% LH (2.0 vs. 4.4%/h), but solids passage rate was not affected by the treatments. These results suggest that addition of LH to FCS-based diets does not affect ruminal environment or digestion, but depressed DM intake. In contrast, addition of LH to CCS-based diets may improve ruminal NDF digestion, increasing DM intake by reducing filling effect and time needed for rumination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call