Abstract

Carbon is commonly used as an electrode material for supercapacitors operating on an electrical double-layer energy storage mechanism. However, the low specific capacitance limits its application. Increasing the specific surface area is by far the most common expansion method, and surprisingly, they are not always positively correlated. The overmuch specific surface will show the characteristics of nanoconfinement, and the potential synergistic enhancement mechanism of various key parameters is still controversial. In this work, carbon fiber electrodes with different ultramicropore structures were designed in order to improve the utilization rate and the discharge capacitance. It has been found that when the ultramicropore entrance's surface is too small, it will lead to the decrease of the external charge of the pore transport channel, and then, the selectivity of the opposite ions will decrease. The numerical simulation based on Poisson and Nernst-Planck equations also indicates that ions have difficulty diffusing into the micropores when their entrance surface decreases. Surface properties within the nanocontainment space become critical factors influencing ion transport and adsorption. The specific discharge capacitance of carbon fiber is increased from 3 to 1430 mF cm-2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.