Abstract

We have demonstrated nitrogen-polar (0001̅) (N-polar) InGaN multiple quantum wells (MQWs) with significantly improved luminescence properties prepared by pulsed metalorganic chemical vapor deposition. During the growth of InGaN quantum wells, Ga and N sources are alternately injected into the reactor to alter the surface stoichiometry. The influence of flow duration in pulsed growth mode on the luminescence properties has been studied. We find that use of pulsed-mode creates a high density of hexagonal mounds with an increased InGaN growth rate and enhanced In composition around screw-type dislocations, resulting in remarkably improved luminescence properties. The mechanism of enhanced luminescence caused by the hexagonal mounds is discussed. Luminescence properties of N-polar InGaN MQWs grown with short pulse durations have been significantly improved in comparison with a sample grown by a conventional continuous growth method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.