Abstract
CoFe2O4 nanoparticles are added to magnesium hydride (MgH2) by high-energy ball milling in order to improve its hydriding properties. The hydrogen storage properties and catalytic mechanism are investigated by pressure-composition-temperature (PCT), differential thermal analysis (DTA), X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The nonisothermal desorption results show that the onset desorption temperature of the MgH2 + 7 mol% CoFe2O4 is 160 °C, which is 200 °C lower than of the as-received MgH2. The dehydrogenation process of the MgH2 doped with the CoFe2O4 nanoparticles includes two steps. DTA curves and XRD patterns reveal that a chemical reaction happens between MgH2 and CoFe2O4, forming the final products of the ternary combination, corresponding to Co3Fe7, MgO and Co. The onset desorption temperature of the ball-milled MgH2 doped with Co3Fe7, MgO and Co is about 260 °C, approximately 100 °C lower than the un-doped MgH2, demonstrating that the ternary combination (Co3Fe7, MgO, and Co) also has a great catalytic effect on the MgH2 hydrogen storage properties. It is also confirmed that the various methods of adding the ternary combination have different effects on the MgH2 hydriding–dehydriding process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.