Abstract

The present study reports the development of Mg–Sm2O3 nanocomposites as light-weight materials for weight critical applications targeted to reduce CO2 emissions, particularly in the transportation sector. Mg-0.5, 1.0, and 1.5 vol % Sm2O3 nanocomposites are synthesized using a powder metallurgy method incorporating hybrid microwave sintering and hot extrusion. The microstructural studies showed dispersed Sm2O3 nanoparticles (NPs), refinement of grain size due to the presence of Sm2O3 NPs, and presence of limited porosity. Microhardness and dimensional stability of pure Mg increased with the progressive addition of Sm2O3 NPs. The addition of 1.5 vol % of Sm2O3 NPs to the Mg matrix enhanced the ignition temperature by ~69 °C. The ability of pure Mg to absorb vibration also progressively enhanced with the addition of Sm2O3 NPs. The room temperature compressive strengths (CYS and UCS) of Mg–Sm2O3 nanocomposites were found to be higher without having any adverse effect on ductility, leading to a significant increase in energy absorbed prior to compressive failure. Further, microstructural characteristics are correlated with the enhancement of various properties exhibited by nanocomposites.

Highlights

  • Magnesium (Mg) is the lightest structural metal and the third most abundant element in theEarth’s hydrosphere and sixth most abundant in the Earth’s crust, making it readily available [1]

  • The grain size reduced with the progressive incorporation of Sm2 O3 NPs to pure Mg, with

  • Mg-1.5 vol % Sm2 O3 exhibiting a maximum of 46.7% reduction in grain size with respect to pure Mg

Read more

Summary

Introduction

Magnesium (Mg) is the lightest structural metal and the third most abundant element in the. Earth’s hydrosphere and sixth most abundant in the Earth’s crust, making it readily available [1]. Mg exhibits good mechanical and thermal properties, damping capacity, excellent castability, and machinability [3]. Mg-based materials have always been used in various industrial sectors such as aerospace, energy, construction, automotive, security, and defense, all of which are crucial to the sustainability and growth of the global economy. Increased demand for light-weighting drives the interest in Mg-based materials to be used in above-mentioned sectors striving for weight reduction, higher fuel efficiency, and payload capacity leading to reduced CO2 emissions. One of the major challenges is the necessity to reduce environmental impact both in their production, end-use, and recyclability

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.