Abstract

Triboelectric nanogenerators (TENGs) have received significant attention in recent years due to their renewable and sustainable properties. They convert mechanical energy into electric energy through contact and separation of two dissimilar materials. Many methods have been developed to improve the performance of TENGs, but little attention has been paid to use nanoparticles such as BaTiO3 (BTO) with high dielectric constant for enhancing the performance. This paper reports the achievement of significant performance enhancement of poly(vinylidene fluoride) (PVDF)/polyamide‐6 (PA6) TENGs by incorporating BTO nanoparticles into the PVDF film. The PVDF‐BTO/PA6 TENG with 10 wt% BTO nanoparticles shows the best results with a peak voltage and charge density up to 900 V and 34.4 μC m−2 at contact frequency of 5 Hz when the contact force and the spacer distance are 180 N and 100 mm, which are much higher than 384 V and 26.4 μC m−2 of the PVDF/PA6 TENG without incorporating BTO nanoparticles. Further increase in the BTO concentration deteriorates the output performance of the TENGs. Detailed investigations on the piezo‐response and permittivity of the PVDF‐BTO films show that the increased piezoelectric constant and permittivity are responsible for the significantly enhanced performance of the TENGs. A mathematical model has been developed to describe the output voltages of the TENG as a function of thickness of the PVDF‐BTO film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.