Abstract
AbstractA hybrid nanoparticle, consisting of BaTiO3 nanoparticles tightly embedded in bronnitride (BN) nanosheets, has been fabricated based on a daring supposition that BN may act as a host to incorporate ferroelectric nanoparticles to improve insulation and polarization under a high electric field. Using the hybrids as fillers in poly(vinylidene fluoride) (PVDF) composites, a high electric breakdown strength (Eb ≈580 kV/mm), which is 1.76 times of the PVDF film, is obtained when the filler content is 5 wt%. A large displacement (9.3 µC/cm2 under 580 kV/mm) is observed so as to obtain a high discharged energy density (Ud ≈17.6 J/cm3) of the BT@BN/PVDF composites, which is 2.8 times of the PVDF film. The enhancement ratio of Eb achieved in this study demonstrates the highest among the reported results. This hybrid structure of fillers provides an effective way to adjust and improve the energy storage properties of the polymer‐based dielectrics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.