Abstract

BackgroundPreviously published data have demonstrated that sickle red blood cells produce twice as much reactive oxygen species (ROS) suggesting that co-inheritance of sickle cell disease (SCD) and glucose 6-phosphate dehydrogenase (G6PD) enzymopathy could lead to more severe anaemia during sickling crises. Elevated foetal haemoglobin (Hb F) levels have been shown to have positive modulatory effects on sickling crises and disease outcomes. This study sought to assess how inheritance of G6PD enzymopathy affects the level of Hb F and haemoglobin concentration in adults in steady state.MethodsThis cross-sectional study selected 100 out-patients (41 males and 59 females) visiting the University of Cape Coast hospital, between January, 2016 and May, 2016. Cellulose acetate electrophoresis (pH 8.2–8.6), methaemoglobin reductase test, modified Betke alkaline denaturation methods were used to investigate haemoglobin variants, qualitative G6PD status, and %Hb F levels in venous blood samples drawn from these participants. Data was analysed with GraphPad Prism 6 and SPSS and significance set at p < 0.05.ResultsForty one percent of the participants demonstrated qualitative G6PD enzymopathy whereas only 10% demonstrated Hb AS type (Sickle cell trait, SCT). 5% of the participants co-inherited SCT and G6PD enzymopathy. %Hb F levels in G6PD deficient males was significantly higher than in G6PD deficient females [(p = 0.0003, 2.696% (males) vs 1.975% (females)], although the %Hb F levels was comparable in non-G6PD deficient individuals. %Hb F levels were significantly elevated in males with SCT only (p < 0.05), or G6PD enzymopathy only (p < 0.0001), or SCT + G6PD enzymopathy (p < 0.0001) compared to males with none of these pathologies even though their respective haemoglobin levels were comparable. Male participants with G6PD enzymopathy + SCT co-inheritance had significantly elevated %Hb F when compared to their counterparts with only G6PD enzymopathy (p < 0.001). Male gender [(p = 0.001, OR: 6.912 (2.277–20.984)] partial defective G6PD enzyme [(p = 0.00, OR: 7.567E8 (8.443E7–6.782E9)] SCT [(p = 0.026, OR: 4.625 (1.196–17.881)] were factors associated with raised %Hb F levels ≥2.5.ConclusionThe inheritance of G6PD defect and/or SCT significantly elevate %Hb F levels in the steady state even though haemoglobin levels are not affected.

Highlights

  • Published data have demonstrated that sickle red blood cells produce twice as much reactive oxygen species (ROS) suggesting that co-inheritance of sickle cell disease (SCD) and glucose 6-phosphate dehydrogenase (G6PD) enzymopathy could lead to more severe anaemia during sickling crises

  • As foetal haemoglobin (Hb F) levels have been demonstrated to positively modulate SCD pathogenesis, we investigated the impact of the inheritance of G6PD enzymopathy and/or Sickle cell trait (SCT) on the %Hb F as well as haemoglobin levels in the peripheral blood of these patients in steady state

  • Since the male participants had significantly elevated %Hb F compared to the females, we evaluated the impact of G6PD enzymopathy and/or SCT on %Hb F levels in male participants (Fig. 3)

Read more

Summary

Introduction

Published data have demonstrated that sickle red blood cells produce twice as much reactive oxygen species (ROS) suggesting that co-inheritance of sickle cell disease (SCD) and glucose 6-phosphate dehydrogenase (G6PD) enzymopathy could lead to more severe anaemia during sickling crises. The normal physiologic functions of red blood cells (RBC) may be hampered by inherited haemoglobinopathies (e.g. sickle cell disease), red cell enzymopathy or red cell membrane abnormalities (e.g. G6PD deficiency). SCD occurs due to the substitution of valine for glutamic acid in position 6 in the beta globin [1,2,3] This leads to the production of abnormal haemoglobin Hb S instead of normal haemoglobin Hb A [1, 4, 5]. Agents causing oxidant stress in G6PD deficient individuals include fava beans and drugs such as aspirin, primaquine and quinine [4]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.