Abstract

AbstractSmall oligomers of the amyloid β (Aβ) peptide, rather than the monomers or the fibrils, are suspected to initiate Alzheimer′s disease (AD). However, their low concentration and transient nature under physiological conditions have made structural investigations difficult. A method for addressing such problems has been developed by combining rapid fluorescence techniques with slower two‐dimensional solid‐state NMR methods. The smallest Aβ40 oligomers that demonstrate a potential sign of toxicity, namely, an enhanced affinity for cell membranes, were thus probed. The two hydrophobic regions (residues 10–21 and 30–40) have already attained the conformation that is observed in the fibrils. However, the turn region (residues 22–29) and the N‐terminal tail (residues 1–9) are strikingly different. Notably, ten of eleven known Aβ mutants that are linked to familial AD map to these two regions. Our results provide potential structural cues for AD therapeutics and also suggest a general method for determining transient protein structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.