Abstract
The aim of this follow-up study was, to compare the effects of mechanical periodontal therapy with or without adjunctive amoxicillin and metronidazole on the subgingival microbiome of smokers with periodontitis using 16S rDNA amplicon next generation sequencing. Fifty-four periodontitis patients that smoke received either non-surgical periodontal therapy with adjunctive amoxicillin and metronidazole (n = 27) or with placebos (n = 27). Subgingival plaque samples were taken before and two months after therapy. Bacterial genomic DNA was isolated and the V4 hypervariable region of the bacterial 16S rRNA genes was amplified. Up to 96 libraries were normalized and pooled for Illumina MiSeq paired-end sequencing with almost fully overlapping 250 base pairs reads. Exact ribosomal sequence variants (RSVs) were inferred with DADA2. Microbial diversity and changes on the genus and RSV level were analyzed with non-parametric tests and a negative binomial regression model, respectively. Before therapy, the demographic, clinical, and microbial parameters were not significantly different between the placebo and antibiotic groups. Two months after the therapy, clinical parameters improved and there was a significantly increased dissimilarity of microbiomes between the two groups. In the antibiotic group, there was a significant reduction of genera classified as Porphyromonas, Tannerella, and Treponema, and 22 other genera also decreased significantly, while Selenomonas, Capnocytophaga, Actinomycetes, and five other genera significantly increased. In the placebo group, however, there was not a significant decrease in periodontal pathogens after therapy and only five other genera decreased, while Veillonella and nine other genera increased. We conclude that in periodontitis patients who smoke, microbial shifts occurred two months after periodontal therapy with either antibiotics or placebo, but genera including periodontal pathogens decreased significantly only with adjunctive antibiotics.
Highlights
Periodontitis is a highly prevalent, biofilm-associated disease and the main reason for tooth loss in the elderly population (Frencken et al, 2017)
645 ribosomal sequence variant (RSV) had a prevalence in ≤2 samples and were removed, together with two RSVs not classified as from the bacterial kingdom
The microbial shift was characterized by a strong reduction of alpha-diversity in general, and especially, periodontal pathogens decreased significantly while commensals increased
Summary
Periodontitis is a highly prevalent, biofilm-associated disease and the main reason for tooth loss in the elderly population (Frencken et al, 2017). We recently performed a microbial sub-group analysis of non-smoking periodontitis patients from the ABPARO study (Hagenfeld et al, 2018). We showed that the used antibiotics caused a microbiome shift characterized by the reduction of the amounts of periodontal pathogens and increase of commensal bacteria in the subgingival biofilm, 2 months after periodontal therapy. Cigarette use is a major risk factor for destructive forms of periodontal disease and profoundly influences the subgingival microbiome, which means that it is more diverse, pathogen rich, and commensal poor (Winkelhoff et al, 2001; Shchipkova et al, 2010; Bizzarro et al, 2013; Moon et al, 2015), even in shallow periodontal pockets ≤4 mm (Haffajee and Socransky, 2001). Re-colonization with commensals after periodontal therapy is compromised in smokers, because they maintain a pro-inflammatory host phenotype (Joshi et al, 2014)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.