Abstract

Due to its sensitivity, the tolerance of impurities and the simplicity of performance, matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) is increasingly used to analyze lipids from biological sources. Although its detailed role is not understood so far, the applied matrix has a pronounced effect on the achievable spectrum quality and particularly how sensitive the individual lipid classes are detectable. Different matrix compounds were recently established in the lipid field including 2,5-dihydroxybenzoic acid (DHB), 9-aminoacridine (9-AA), para-nitroaniline (PNA), 2-mercaptobenzothiazole (MBT), and 2-(2-aminoethylamino)-5-nitropyridine (AAN). It is the aim of this paper to compare the properties of these matrices with the newly synthesized matrix, α-cyano-2,4-difluorocinnamic acid (Di-FCCA). An organic extract from hen egg yolk was used as a simple and easily available test system. It will be shown that Di-FCCA is the matrix of choice to detect lipids in the positive-ion mode due to an achievable sensitivity gain of more than one order of magnitude compared to alternative matrices. In contrast, Di-FCCA is not suitable for negative-ion detection of phospholipids. Here, 9-AA is unequivocally the matrix of choice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.