Abstract
Clarification of the role of the spin state that initiates exciton dissociation is critical to attaining a fundamental understanding of the mechanism of organic photovoltaics. Although an excited spin-triplet state with an energy lower than that of excited spin-singlet state is disadvantageous in exciton dissociation, a small electron exchange integral results in small singlet-triplet energy splitting in some material systems. This energy splitting leads to a nearly isoenergetic alignment of both excited states, raising a question about the role of excited spin states in exciton dissociation. Herein, we show that the spin-triplet rather than the spin-singlet plays a critical role in the exciton dissociation that leads to the formation of free carriers. This result indicates that the spin-triplet inherently acts as an intermediate, leading to exciton dissociation. Thus, our demonstration provides a fundamental understanding of the role of excited spin states of organic molecular systems in photoinduced charge-carrier generation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.