Abstract

IntroductionMalignant gliomas are the most prevalent and fatal types of primary malignant brain tumors with poor prognosis. Protein phosphatase 3 catalytic subunit beta (PPP3CB) is a pivotal constituent of the Ca2+/calmodulin-dependent serine/threonine protein phosphatases and widely expressed in brain. We aimed at identifying whether PPP3CB has potential in being a novel biomarker of malignant gliomas, bringing new insights to clinical management and therapy. MethodsTranscriptomes and clinical data of Glioblastoma (GBM) and low-grade glioma (LGG) samples were downloaded from TCGA and CGGA. We first explored the expressional and survival features of tumor tissues. Then, PPP3CB-associated genes were identified and their functional pathways were explored through GSEA analyses. Western blotting was conducted to modify PPP3CB expression. Samples of glioma patients and healthy controls were collected and immunohistochemistry (IHC) staining was performed to detect protein level. Further, we carried out an immune infiltration analysis, explored the correlation between PPP3CB and immune checkpoint genes, as well as to assessed the tumor mutation burden (TMB) and tumor microenvironment score (TMEscore) of PPP3CB. ResultsPPP3CB expression in malignant glioma tissues was significantly downregulated and was considered an independent prognostic factor. Several functional pathways were observed through functional pathway analyses. PPP3CB's expression was strongly related to the infiltration of various immune cells and expression of key immune checkpoint genes. PPP3CB expression in high-grade gliomas was significantly lower, affecting glioma cells' proliferation and apoptosis in vitro. ConclusionPPP3CB was a potential biomarker for the diagnosis and prognosis of malignant gliomas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call