Abstract

For the spin-to-charge conversion (SCC) in heavy metal/ferromagnet (HM/FM) heterostructure, the contribution of interfacial spin-orbit coupling (SOC) remains controversial. Here, we investigate the SCC process of the Pt/NiFe heterostructure by the spin pumping in YIG/Pt/NiFe/IrMn multilayers. Due to the exchange bias of NiFe/IrMn structure, the NiFe magnetization can be switched between magnetically unsaturated and saturated states by opposite resonance fields of YIG layer. The spin-pumping signal is found to decrease significantly when the NiFe magnetization is changed from the saturated state to the unsaturated state. Theoretical analysis indicates that the interfacial spin absorption is enhanced for the above-mentioned NiFe magnetic state change, which results in the increased and decreased spin flow in the Pt layer and across the Pt/NiFe interface, respectively. These results demonstrate that in our case the interfacial SOC effect at the Pt/NiFe interface is dominant over the bulk inverse spin Hall effect in the Pt layer. Our work reveals a significant role of interfacial SOC in the SCC in HM/FM heterostructure, which can promote the development of high-efficiency spintronic devices through interfacial engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.