Abstract

The layered solid electrolyte Li2ZrCl6 and Li metal electrodes have a very good contact stability, but the thermal transport properties of Li2ZrCl6 are still unclear. Here, we systematically study the intrinsic lattice thermal conductivity (κp) of Li2ZrCl6 using the machine-learning potential approach based on first-principles calculations combined with the Boltzmann transport theory. The results show that the κp of Li2ZrCl6 at room temperature is 3.94 W/mK along the in-plane (IP) direction and 1.05 W/mK along the out-plane (OP) direction, which means that the κp is significantly anisotropic. In addition, under the compressive stress in the OP direction, the κp evolution along the IP and OP directions exhibits completely different trends, because the stress has a significant regulatory effect on the contribution of optical phonons to κp. With the increase in stress, the κp in the IP direction monotonically decreases, while the κp in the OP direction increases by a factor of 2.2 under a compressive strain of 13%. This is because the contribution of low-frequency optical phonons to κp in the IP direction is as high as 58% when no stress is applied, and this contribution is significantly suppressed with increasing compressive strain. However, the contribution of optical phonons in the OP direction to the κp increases with the increase in stress. Our results reveal the thermal transport properties of Li2ZrCl6 and the effect of the compressive strain on the κp of Li2ZrCl6, thereby providing a reference for the use of Li2ZrCl6 in Li-metal batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call